Chinese Remainder Theorem

Dr. Amol Sonawane

Assistant Professor
Department of Mathematics
Government College of Arts and Science
Aurangabad

Chinese Remainder Theorem

Theorem

```
Let n_1, n_2, \cdots, n_r be positive integers such that \gcd(n_i, n_j) = 1 for i \neq j. Then the system of linear congruences x \equiv a_1 \pmod{n_1} x \equiv a_2 \pmod{n_2} \vdots x \equiv a_r \pmod{n_r} has a simultaneous solution.
```

Proof of Chinese Remainder Theorem

```
Proof: Let n = n_1 n_2 \cdots n_r. For each k = 1, 2, \cdots, r, let N_k = \frac{n}{n_k}.
Since gcd(n_i, n_i) = 1 for i \neq j, gcd(N_k, n_k) = 1 for each
k=1,2,\cdots,r
\implies The linear congruence N_k x \equiv 1 \pmod{n_k} has a unique
solution, say x_k.
Let \bar{x} = a_1 N_1 x_1 + a_2 N_2 x_2 + \cdots + a_r N_r x_r.
Note that N_i \equiv 0 \pmod{n_k} for i \neq k. (: n_k \mid N_i \text{ for } i \neq k).
\implies a_i N_i x_i \equiv 0 \pmod{n_k} for i \neq k.
\implies \bar{x} \equiv a_k N_k x_k \pmod{n_k} for k = 1, 2, \dots, r.
\Rightarrow \bar{x} \equiv a_k \pmod{n_k} for k = 1, 2, \dots, r. (: N_k x_k \equiv 1 \pmod{n_k}).
\implies \bar{x} is a solution of the given system of linear congruences.
```

congruences modulo n.

Now we prove that \bar{x} is unique solution of the given system of linear

Proof of Chinese Remainder Theorem

Suppose that \bar{y} is also a solution of the given system of linear congruences.

```
Then \bar{y} \equiv a_k \pmod{n_k} for k = 1, 2, \cdots, r.

\implies \bar{x} \equiv \bar{y} \pmod{n_k} for k = 1, 2, \cdots, r. (: \bar{x} \equiv a_k \pmod{n_k})

\implies n_k \mid (\bar{x} - \bar{y}) for k = 1, 2, \cdots, r.

But \gcd(n_i, n_j) = 1 for i \neq j.

\implies n_1 n_2 \cdots n_r \mid (\bar{x} - \bar{y}).

\implies n \mid (\bar{x} - \bar{y}).

\implies \bar{x} \equiv \bar{y} \pmod{n}.
```

Hence the given system of linear congruences has unique simultaneous solution modulo $n = n_1 n_2 \cdots n_r$.

Example

Example

Solve the system of linear congruences:

$$x \equiv 1 \pmod{3}$$
, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.

Solution: Let $n=3\cdot 5\cdot 7=105$. Let $N_1=\frac{n}{3}=35$, $N_2=\frac{n}{5}=21$ and $N_3=\frac{n}{7}=15$. The linear congruences $35x\equiv 1\ (\text{mod }3)$, $21x\equiv 1\ (\text{mod }5)$, $15x\equiv 1\ (\text{mod }7)$ are satisfied by $x_1=2$, $x_2=1$, $x_3=1$, respectively. Take $\bar{x}=1\cdot 35\cdot 2+2\cdot 21\cdot 1+3\cdot 15\cdot 1=70+42+45=157$. But $\bar{x}=157\equiv 52\ (\text{mod }105)$.

Hence 52 is the required solution of the given system of linear congruences.

Thank You!